How to Prove It: A Structured Approach
Daniel J. Velleman
Pen and Paper Exercises in Machine Learning
Michael U. Gutmann
流畅的Python
Luciano Ramalho
Computer Vision: Models, Learning, and Inference
Simon J. D. Prince
Combinatorial Optimization: Theory and Algorithms
Bernhard Korte & Jens Vygen
Algorithms and Combinatorics (1)
Algorithms and Combinatorics (2)
Numerical Optimization
Jorge Nocedal & Stephen J. Wright
Springer Series in Operations Research (1)
Algorithms for Convex Optimization
Nisheeth K. Vishnoi
Computers and Intractability: A Guide to the Theory of NP-completeness
Michael R. Garey & David S. Johnson
Proximal Algorithms
Neal Parikh & Stephen P. Boyd & Now Publishers
Non-Convex Optimization for Machine Learning
Prateek Jain & Purushottam Kar
The Design of Approximation Algorithms
David P. Williamson & David B. Shmoys